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SUMMARY 
Unsteady analytical solutions to the incompressible Navier-Stokes equations are presented. They are fully 
three-dimensional vector solutions involving all three Cartesian velocity components, each of which depends 
non-trivially on all three co-ordinate directions. Although unlikely to be physically realized, they are well 
suited for benchmarking, testing and validation of three-dimensional incompressible Navier-Stokes solvers. 
The use of such a solution for benchmarking purposes is described. 
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1. INTRODUCTION 

Development and testing of Navier-Stokes solvers are facilitated by comparison of numerical 
results with benchmarks. Benchmarks can be exact (analytic) solutions to the Navier-Stokes 
equations, ‘ 3 ’  high-resolution numerical simulations (see e.g. References 3 and 4) or reliable 
experimental data sets. Each of these possibilities has drawbacks. For example, many exact 
solutions of the Navier-Stokes equations are degenerate in the sense that certain terms in the 
governing equations are identically zero. This precludes testing of all aspects of the numerical 
algorithm, e.g. interactions between convective terms and a Stokes solver in a split step 
approach. To the best of our knowledge there are no exact closed-form solutions which involve 
all terms in the Navier-Stokes equations and are fully three-dimensional.’ High-resolution 
numerical benchmark simulations, while common for two-dimensional (2D) flows, are extremely 
expensive for fully 3D Navier-Stokes flows. Although 3D solvers can of course be used to 
simulate 2D flows, debugging and complete evaluation of 3D code performance is best provided 
by full 3D flows. Finally, experimental data sets can contain measurement errors that complicate 
validation studies. 

In this work we consider analytical benchmarks and seek to develop ‘full’ solutions to the 
incompressible 3D Navier-Stokes equations. Such solutions should have non-zero (and non- 
trivial) velocities in each of the three co-ordinate directions. Further, each velocity component 
should depend on all three spatial co-ordinates (x, y ,  z) ,  should be expressible in closed form, 
and should be such that the unsteady, convective, pressure and diffusive terms in the Navier- 
Stokes equations are all non-zero. 

Development of a 3D solution was motivated by an exact 2D solution originally derived by 
Taylor? 
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cos(2nx) + cos(2ny) -4rr'", 
- - e  , 

4 p = - - -  

where (u, u )  are the velocity components in the (x, y)-directions. Equations ( 1 )  constitute a 2D 
Navier-Stokes solution in which the unsteady terms balance the diffusive terms, while the 
convective terms balance the pressure gradient, and have been used for 2D benchmarking.6 

2. METHODS 

We search for an exact solution to the 3D Navier-Stokes equations in Cartesian co-ordinates, 
written here in dimensionless form: 

(2) 

v - v  = 0, (3) 

where Re = UL/v  and the following characteristic quantities are defined: length L, velocity U, 
time L2/v  and pressure pU2. Motivated by Taylor's 2D solution, we construct a velocity field 
v such that 

dvldt + Re v - VV = -Re V p  + V2v, 

(1) unsteady terms balance viscous terms in the momentum equations 
(2) the velocity field is divergence-free 
(3) the convective terms v - V v  can be expressed as the gradient of a scalar function (the 

negative of the pressure). 

In order to satisfy the first criterion, we assume a separable solution of the form 

v(x, t )  = V(x)T(t) ,  (4) 

with 

dT/dt = A 2 T ,  

v2v = A2V. 

Equation (5a) requires that T(t)  = e"'. 

streamfunction Y such that V = V x V'. Equation (5b) implies that Y' must satisfy 
The second criterion can be satisfied by use of a (vector-valued) generalization of the 

V 2 Y  = A2Y. (6)  
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i, j and k are Cartesian basis vectors andj, g and h are arbitrary functions. In order to satisfy 
(6), we require 

f" = ay ,  (1la) 

g" = b 2 g ,  (1 1b) 

h" = c2h, ( l lc )  

with 1' = a' + b2 + c2. 

the curl of v Vv vanish. Using standard vector identities, this condition can be rewritten as 
I t  remains to satisfy the third criterion, for which a necessary and sufficient condition is that 

v x (V x (V x V)] = 0. (12) 

If this condition holds, the pressure is given by 

p = - j ( a { V }  .A?{V} + H ) T 2 ( t ) ,  

where H is a function which satisfies V H  = -2n{V} x (V  x B{V}) and W{.} is the real part 
of a quantity. Flows which satisfy (12) are the so-called generalized Beltrami flows.' A sufficient 
condition for (12) to hold is V x (V x V) = 0, in which case the flow is said to be a Beltrami or 
Trkal flow.'*2 We must choosef, g and h such that (12) is satisfied. 

We note in passing that Taylor's 2D flow is obtained by setting YYz = Yzx = 0 and h = 1, 
in which case Yxy = f ( x ) g ( y ) .  In this case V \Y = 0 and (12) will always hold. 

3. RESULTS 

By virtue of condition (1 l), the functionsj, g and h must be either sines, cosines, exponential or 
constant functions or linear combinations thereof. We consider several possible combinations 
below.* 

3.1. f, g and h exponentials 

trivially satisfied by the following combinations of (a, b, c). 
Condition (1 1) requires thatj(x) = eax, g ( x )  = ebx and h(x)  = ecx. Equations (12) are non- 

(1) a + b + c = 0 for (a, b, c) all real. This is a generalized Beltrami flow and yields the 

(14a) 

( 14b) 

(144 

, (144 

where a and b are real constants. Although benchmarking with this solution is possible, 
it is less than ideal, since the exponential temporal growth of the solution may mask 
numerical instabilities. 

following velocity and pressure fields: 
t( = (bea(x-2)+b(y-Z) - aea (z -y )+b(x -y )  [az+bz+(a+b)']r )e 

)e 

)e 

= (bea(y - x)  + b(r - x)  - aea(x - z )  + b(y - 2) [az + b' + (a + b)']l 

= ( bedz - y) + b(x - y) - aea(y - x) + b(z - x) [az + b: + ( a  + b)']! 

= (a2 + b2 + ab)(ea(x-Y) + b ( x  - 2 )  + ea(y - z) t b(y - x) + ea(z - x) + b(z - y) 2[a2 t b* + (a + b)21~ )e 

Note that an exhaustive analysis of all possible combinations was not made and the above formulation may admit 
more exact solutions than presented here. 
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Figure I .  Vector plot of Row field defined by (15) for (I = n/4 and d = 4 2  at time r = 0. Three-dimensional velocity 
vectors on three sides of the unit cube corresponding to x = I. y = I and L' = 1 are plotted 

(2) a' + b2 = 0, c pure imaginary. This is a Beltrami flow and yields a family of velocity and 
pressure fields depending on the selection of a and b. If a is chosen to be real so that 
b = f i a  and c is written as c = id for d real and arbitrary, then the following solutions 
are obtained: 

Equations (15) result from taking the real part of V. A second solution, found by taking 
the imaginary part of V, has a form identical to (15), except that (i) for the case b = ia 
cosines are replaced by sines and sines are replaced by negative cosines and (ii) for the 
case b = -ia cosines are replaced by negative sines and sines are replaced by cosines.* 
The above solution appears to be well suited to benchmarking, since it decays exponentially 
in time. A portion of this flow field is shown in Figure 1. Although the fully 3D structure 
of the flow is difficult to visualize, it seems to consist of a series of counter-rotating vortices 
intersecting one another at oblique angles. For the parameter values used to generate 
Figure 1, only a portion of a vortex falls within the plotted domain. 

* A second, closely related family of solutions is obtained by choosing (I to be purely imaginary and b real. They are 
not reproduced herein so as to conserve space. 
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3.2. J g and h combinations of sine, cosine, sinh and cosh 

Solutions of the above form were only found when h was set equal to one. In this case four 
solutions with f(x) = cosh(bx) or sinh(6x) and g(y) = sin(6y) or cos(by) were found. These are 
steady Beltrami flows which are inviscid solutions to the Navier-Stokes equations. They are 
therefore not suitable for benchmarking full Navier-Stokes solvers. 

4. NUMERICAL TESTING 

A well-validated finite element solver' was used to demonstrate the use of the above analytic 
solution for benchmarking. The solver uses Galerkin spatial discretization of the 3D unsteady 
Navier-Stokes equations, with modified Crouzeix-Raviart Qz-P, brick elements' and second- 
order implicit Gear time marching. The convective terms were treated implicitly using Newton 
linearization, while the pressure was decoupled from the momentum equation using the penalty 
formulation.' This code is expected to demonstrate O(h3) spatial accuracy in velocity, O(h2) 
spatial accuracy in pressure and O(At2) temporal accuracy, where h is a measure of mesh size. 

A cube centred at (0, 0,O) and extending one unit in all directions was used for the tests. This 
domain was discretized uniformly with 2-7 brick elements (i.e. h = 0.5414, where h is the space 
between adjacent nodes per direction. In all tests the independent constants in equations (1 5 )  
were chosen as a = 4 4  and d = 4 2 ,  resulting in initial velocities ranging from 1.59 to -3.31 
and a 22% decay after time t = 0-1. These values were chosen to optimize spatial and temporal 
variation while maintaining reasonable execution times and are identical to those used to plot 
Figure 1. Numerical solutions were computed by specifying an initial ( t  = 0) velocity field 
everywhere via equations (15) and stepping a specified number of time steps to t = 0.1. Dirichlet 
boundary conditions, also based upon equations (1  5),  were applied on all faces. The velocity 

0.5 nodal spaeing. h 0.3 

Figure 2. Plot of velocity (E.) and pressure ( E J  errors versus node spacing ( h )  for the analytic flow field as computed 
by the penalty finite element code described in the text. Data points were obtained for meshes with 2-7 elements per 
co-ordinate direction, solid lines are the least-squares linear fit to the logarithmic data and m is the slope of the 
corresponding fitted line. Sixteen time steps were used to step to I = 0 1  to ensure that the temporal error was small 

for all tests, and Re = 1 for this set of runs 
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field at time t = 0.1 was compared against the analytic field using a ‘normalized 4 difference 
norm’ or E, defined as 

where u is the numerically computed velocity field, ueXac, is the analytic velocity field and l / - l l L 2  
is the standard L,-norm. A similar error measure E ~ ,  was computed at f = 0.1 for the pressure. 
All L2-norms were computed elementwise using Gaussian quadrature of sufficiently high order 
as to match the analytical and numerical values for J)U,,,~,JJ~~ to within machine accuracy. 

Figure 2 shows computed velocity (E,) and pressure (E,,) errors as a function of nodal spacing 
h for the domain and flow field described above. Meshes with 2-7 elements per dimension were 
used to obtain the data points shown. The slope of the lines regressed to these data confirms 
the O(h3) and O(h2) performance of the code for the velocity and pressure interpolations 
respectively. 

5. DISCUSSION 

Although the flow defined by (15) will likely never be physically realized, it is an excellent 
numerical benchmark/test case for several reasons. First, since closed-form expressions for the 
velocities and pressure are known, individual terms in the Navier-Stokes equations can be 
analytically computed and compared with their numerical counterparts. We have found this 
capability to be very helpful for debugging purposes. Secondly, this solution can be imposed on 
arbitrarily shaped finite domains, permitting effects of mesh distortion to be quantified. Thirdly, 
this solution is valid for all Reynolds numbers, so that the effects of Re on the solver can be 
assessed simply. Fourthly, as can be seen from Figure 1, the flow field is rather complex and is 
not unidirectional, thus providing a ‘challenging’ test case. Finally, although the solution is 
constructed so that unsteady and diffusive terms balance, as do connective and pressure gradient 
terms, the numerical solver does not ‘know’ that this is the case. Thus (15) provides a robust 
test for a solver. 

A potential problem in use of the above analytic solution for benchmarking is the application 
of boundary conditions. Imposition of Dirichlet conditions at every boundary has the potential 
to lead to ‘wiggles’ in the velocity field near the boundary. This problem can be partially 
alleviated by specification of non-homogeneous Neumann conditions at some boundaries. 
However, it is prudent to check for the existence of such disturbances before using calculated 
velocity fields as the basis of error estimates. The presence of such wiggles would indicate that 
the grid Peclet number near the boundary should be reduced, either through use of higher spatial 
resolution or lower Reynolds numbers. In practice, for tests with Re = 1, 10 or 100 no wiggles 
were observed in computed velocity fields, with the exception of runs at Re = 100 with three or 
fewer elements per co-ordinate direction. These coarse mesh runs at Re = 100 failed to converge, 
probably owing to the growth of boundary-induced wiggles. 

The above solution is not intended to replace other standard benchmarks such as the driven 
cavity problem or flow over a backward facing step. However, it should prove useful as an 
additional benchmarking tool in the development of 3D incompressible Navier-Stokes solvers. 
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